Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.10 EC 19/10/20

CONTINUOUS INTERNAL EVALUATION- 1

Dept:EC Date:21/10/2020 Sem / Div:V

Sub:Electromagnetic Waves S Code:18EC55

Time: Max Marks: 50

Elective:N

9:30-11:00 am

Note: Answer any 2 full questions, choosing one full question from each part.

Q	Questions	Marks	RBT	COs
N	PART A			
1 a	State and Explain Coulombs law and also represent in vector form.	9	L2	CO1
b	Two charges of magnitudes 2mC and -7mC are located at places P1(4,7,-5) and P2(-3,2,-9) respectively in free space, evaluate the vector force on charge at P2.	8	L3	C01
С	A charge of -0.3μC is located at A(25,-30,15) cm, and a second charge of 0.5μC at B(-10,8,12) cm. Find E at i) the origin ii) P(15,20,50)cm.	8	L3	CO1
	OR			
2 a	Derive the expression for electric field intensity due to infinite line charge.	9	L2	CO1
Ь	Two particles having charge of 2nC and 5nC are spaced 80 cm apart. Determine the electric field intensity at point 'A' situated at a distance of 0.5m from each of the two particles. Assume dielectric constant of 5.	8	L3	CO1
С	Define a) Electric field intensity b) Volume charge density c) Electric flux density.	8	L2	CO1
	PART B	Hillian	110.00	
3 a	Derive the relation $\mathbf{E} = -\nabla V$. Write potential gradient in all the coordinate systems.	8	L2	CO2
t	Evaluate both sides of Divergence theorem for the field $D=2xy a_x + x^2 a_y C/m^2$ and the rectangular parallelepiped formed by the planes $x=0$ and 1, $y=0$ and 2, and $z=0$ and 3.	10	L3	CO2
C	State and prove Gauss's law.	7	L2	CO1
	OR			
4 a	Define potential difference and absolute potential. Derive the expression for potential difference due to point charge.	n 8	L2	CO2
ŧ	A point charge of 6 nC is located at origin in free space, find potential of point P, if P is located at(0.2,-0.4,0.6) and i) V=0 at infinity ii) V=0 at(2,0,0) iii)V=10 V at (-0.8,2,-2)	10	L3	CO2
1	Derive the expression for equation of continuity in point form.	7	L2	CO2

